791 research outputs found

    Crossover from Endogenous to Exogenous Activity in Open-Source Software Development

    Get PDF
    We have investigated the origin of fluctuations in the aggregated behaviour of an open-source software community. In a recent series of papers, de Menezes and co-workers have shown how to separate internal dynamics from external fluctuations by capturing the simultaneous activity of many system's components. In spite of software development being a planned activity, the analysis of fluctuations reveals how external driving forces can be only observed at weekly and higher time scales. Hourly and higher change frequencies mostly relate to internal maintenance activities. There is a crossover from endogenous to exogenous activity depending on the average number of file changes. This new evidence suggests that software development is a non-homogeneous design activity where stronger efforts focus in a few project files. The crossover can be explained with a Langevin equation associated to the cascading process, where changes to any file trigger additional changes to its neighbours in the software network. In addition, analysis of fluctuations enables us to detect whether a software system can be decomposed in several subsystems with different development dynamics.Comment: 7 pages, 4 figures, submitted to Europhysics Letter

    Clustering properties of a generalised critical Euclidean network

    Full text link
    Many real-world networks exhibit scale-free feature, have a small diameter and a high clustering tendency. We have studied the properties of a growing network, which has all these features, in which an incoming node is connected to its iith predecessor of degree kik_i with a link of length \ell using a probability proportional to kiβαk^\beta_i \ell^{\alpha}. For α>0.5\alpha > -0.5, the network is scale free at β=1\beta = 1 with the degree distribution P(k)kγP(k) \propto k^{-\gamma} and γ=3.0\gamma = 3.0 as in the Barab\'asi-Albert model (α=0,β=1\alpha =0, \beta =1). We find a phase boundary in the αβ\alpha-\beta plane along which the network is scale-free. Interestingly, we find scale-free behaviour even for β>1\beta > 1 for α<0.5\alpha < -0.5 where the existence of a new universality class is indicated from the behaviour of the degree distribution and the clustering coefficients. The network has a small diameter in the entire scale-free region. The clustering coefficients emulate the behaviour of most real networks for increasing negative values of α\alpha on the phase boundary.Comment: 4 pages REVTEX, 4 figure

    Modeling the Internet's Large-Scale Topology

    Full text link
    Network generators that capture the Internet's large-scale topology are crucial for the development of efficient routing protocols and modeling Internet traffic. Our ability to design realistic generators is limited by the incomplete understanding of the fundamental driving forces that affect the Internet's evolution. By combining the most extensive data on the time evolution, topology and physical layout of the Internet, we identify the universal mechanisms that shape the Internet's router and autonomous system level topology. We find that the physical layout of nodes form a fractal set, determined by population density patterns around the globe. The placement of links is driven by competition between preferential attachment and linear distance dependence, a marked departure from the currently employed exponential laws. The universal parameters that we extract significantly restrict the class of potentially correct Internet models, and indicate that the networks created by all available topology generators are significantly different from the Internet

    Self Consistent Expansion for the Molecular Beam Epitaxy Equation

    Full text link
    Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the non linear molecular beam epitaxy (MBE) equation, a self-consistent expansion (SCE) for the non linear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(rr,tt)=2D0rr2ρdδ(tt)D({\vec r - \vec r',t - t'}) = 2D_0 | {\vec r - \vec r'} |^{2\rho - d} \delta ({t - t'}). I find a lower critical dimension dc(ρ)=4+2ρd_c (\rho) = 4 + 2\rho , above, which the linear MBE solution appears. Below the lower critical dimension a r-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe non linear MBE, using a reliable method that proved itself in the past by predicting reasonable results for the Kardar-Parisi-Zhang (KPZ) system, where DRG failed to do so.Comment: 16 page

    Diffusive Capture Process on Complex Networks

    Full text link
    We study the dynamical properties of a diffusing lamb captured by a diffusing lion on the complex networks with various sizes of NN. We find that the life time ofalambscalesasN of a lamb scales as \sim N and the survival probability S(N,t)S(N\to \infty,t) becomes finite on scale-free networks with degree exponent γ>3\gamma>3. However, S(N,t)S(N,t) for γ<3\gamma<3 has a long-living tail on tree-structured scale-free networks and decays exponentially on looped scale-free networks. It suggests that the second moment of degree distribution istherelevantfactorforthedynamicalpropertiesindiffusivecaptureprocess.Wenumericallyfindthatthenormalizednumberofcaptureeventsatanodewithdegree is the relevant factor for the dynamical properties in diffusive capture process. We numerically find that the normalized number of capture events at a node with degree k,, n(k),decreasesas, decreases as n(k)\sim k^{-\sigma}.When. When \gamma<3,, n(k)stillincreasesanomalouslyfor still increases anomalously for k\approx k_{max}.Weanalyticallyshowthat. We analytically show that n(k)satisfiestherelation satisfies the relation n(k)\sim k^2P(k)andthetotalnumberofcaptureevents and the total number of capture events N_{tot}isproportionalto is proportional to , which causes the γ\gamma dependent behavior of S(N,t)S(N,t) and $.Comment: 9 pages, 6 figure

    Dynamical surface structures in multi-particle-correlated surface growths

    Full text link
    We investigate the scaling properties of the interface fluctuation width for the QQ-mer and QQ-particle-correlated deposition-evaporation models. These models are constrained with a global conservation law that the particle number at each height is conserved modulo QQ. In equilibrium, the stationary roughness is anomalous but universal with roughness exponent α=1/3\alpha=1/3, while the early time evolution shows nonuniversal behavior with growth exponent β\beta varying with models and QQ. Nonequilibrium surfaces display diverse growing/stationary behavior. The QQ-mer model shows a faceted structure, while the QQ-particle-correlated model a macroscopically grooved structure.Comment: 16 pages, 10 figures, revte

    Weighted Evolving Networks

    Full text link
    Many biological, ecological and economic systems are best described by weighted networks, as the nodes interact with each other with varying strength. However, most network models studied so far are binary, the link strength being either 0 or 1. In this paper we introduce and investigate the scaling properties of a class of models which assign weights to the links as the network evolves. The combined numerical and analytical approach indicates that asymptotically the total weight distribution converges to the scaling behavior of the connectivity distribution, but this convergence is hampered by strong logarithmic corrections.Comment: 5 pages, 3 figure

    Self-similar disk packings as model spatial scale-free networks

    Full text link
    The network of contacts in space-filling disk packings, such as the Apollonian packing, are examined. These networks provide an interesting example of spatial scale-free networks, where the topology reflects the broad distribution of disk areas. A wide variety of topological and spatial properties of these systems are characterized. Their potential as models for networks of connected minima on energy landscapes is discussed.Comment: 13 pages, 12 figures; some bugs fixed and further discussion of higher-dimensional packing
    corecore